skip to main content


Search for: All records

Creators/Authors contains: "Dillon, Andrew D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. MXenes comprise a new class of solution‐dispersable, 2D nanomaterials formed from transition metal carbides and nitrides such as Ti3C2. Here, it is shown that 2D Ti3C2can be assembled from aqueous solutions into optical quality, nanometer thin films that, at 6500 S cm−1, surpass the conductivity of other solution‐processed 2D materials, while simultaneously transmitting >97% of visible light per‐nanometer thickness. It is shown that this high conductivity is due to a metal‐like free‐electron density as well as a high degree of coplanar alignment of individual nanosheets achieved through spincasting. Consequently, the spincast films exhibit conductivity over a macroscopic scale that is comparable to the intrinsic conductivity of the constituent 2D sheets. Additionally, optical characterization over the ultraviolet‐to‐near‐infrared range reveals the onset of free‐electron plasma oscillations above 1130 nm. Ti3C2is therefore a potential building block for plasmonic applications at near‐infrared wavelengths and constitutes the first example of a new class of solution‐processed, carbide‐based 2D optoelectronic materials.

     
    more » « less